User-Defined Data Distributions in High-Level Programming
Languages

Roxana E Diaconescu
Center for Advanced Computing Research
California Institute of Technology
Pasadena, CA 91125
Email: roxana@Qcaltech.edu

Abstract

One of the characteristic features of today’s high per-
formance computing systems is a physically distributed
memory. Efficient management of locality is essential
for meeting key performance requirements for these ar-
chitectures. The standard technique for dealing with
this issue has involved the extension of traditional se-
quential programming languages with explicit message-
passing, in the context of a processor-centric view of
parallel computation. This has resulted in complex and
error-prone assembly-style codes in which algorithms
and communication are inextricably interwoven.

This paper presents a high-level approach to the de-
sign and implementation of data distributions. QOur
work is motivated by the need to improve the cur-
rent parallel programming methodology by introducing
a paradigm supporting the development of efficient and
reusable parallel code. This approach is currently be-
ing implemented in the context of a new programming
language called Chapel, which is designed in the HPCS
project Cascade.

1 Introduction

A key feature of today’s high performance comput-
ing systems is a physically distributed memory, which
is common to all architectures on the Top500 list [16].
Efficient management of locality is essential for these
machines. The standard technique for dealing with this
issue has involved the extension of traditional sequen-
tial programming languages such as Fortran, C, and
C++ with explicit message-passing, in the context of
a processor-centric view of parallel computation. This
has resulted in complex and error-prone programs in
which algorithms and communication are inextricably

Hans P. Zima Jet Propulsion Laboratory
California Institute of Technology
Pasadena, CA 91109
Email: zima@jpl.nasa.gov

interwoven.

The High Performance Fortran (HPF) family of lan-
guages proposed a higher-level programming paradigm
based on an abstract specification of data distribution
by the programmer while delegating the generation of
explicit message passing code to the compiler/runtime
system. This approach presented a major step towards
more expressive parallel languages, but has not, for a
variety of reasons, been broadly accepted by the user
community. However, it has deeply influenced later re-
search, including the work presented in this paper. We
describe the design of a powerful facility for defining
new data distributions in the context of the Chapel
programming language [3, 8]. User-defined distribu-
tions increase the power of the underlying language
similar to the way function definitions raise the op-
erational level of a programming language: new data
distributions can be generated as first-class objects in
a language-provided framework, placed in a library,
passed to functions, and reused in array declarations.
In the simplest case, the specification of a new distri-
bution can consist of just a few lines of code to define a
mapping from global indices to memory; in contrast, a
sophisticated user (or distribution writer) can control
the internal representation and layout of data to an
almost arbitrary degree, allowing even the expression
of auxiliary structures typically used for distributed
sparse matrix data.

Our goal is to provide maximum flexibility to
the programmer when distributing data collections
across locales (units of uniform memory access), while
enabling compiler transformations and optimizations
that deal with low-level details of distribution man-
agement such as explicit distinction between local and
remote accesses and generation of communication and
synchronization. The programmer retains control of
the higher-level aspects of data distribution: the spe-

cific challenge for the design of the relevant language
features is to come up with a set of primitives and
interfaces which establish a productive communication
between programmer intentions and compiler trans-
formations.

The rest of the paper is organized as follows. After
summarizing related research efforts and their relation-
ship to our work in Section 2 we establish the concep-
tual foundation for the discussion of distributions in
Section 3. The following Section 4 shows how distri-
butions can be defined and used in Chapel, illustrating
the our framework for specifying new distributions with
a set of simple examples. Finally, Section 5 states the
main conclusion of our paper and summarizes future
directions of research.

2 Related Work

Our work builds on research performed by many
groups over the past decades. IVTRAN [22], developed
for the SIMD architecture ILLIAC IV, was an early lan-
guage providing high-level control of data distributions.
With the advance of distributed-memory systems in
the 1980s, a new class of data-parallel languages was
explored. In such languages the large data structures
in an application are laid out across the memories of
a distributed-memory parallel machine. The subcom-
ponents of these distributed data structures can then
be operated upon in parallel on all processors. Kali
[21] was the first language to introduce distribution
declarations in the context of distributed-memory ar-
chitectures, together with a simple mechanism for user-
defined distributions. Fortran D [14], Vienna Fortran
[5], and Connection Machine Fortran [1], the major pre-
decessors of the High Performance Fortran [15] effort,
all offered facilities for combining multi-dimensional ar-
ray declarations with the specification of a data distri-
bution or alignment. Several other academic as well
as commercial projects also contributed to the under-
standing necessary for the development of data parallel
languages and the required compilation technology.

These languages largely relied on a set of built-
in mechanisms, such as regular block and block-cyclic
distributions, as well as limited features for irregu-
lar distributions, such as general block and indirect.
The Vienna Fortran language specification [18] intro-
duced a capability for user-defined mappings from For-
tran arrays to a set of abstract processors, and for
user-defined alignments between arrays. Distribution
classes more general than the standard distributions
mentioned above include the Kelp library [13] and the
generalized multipartitioning scheme implemented in

Rice University’s dHPF compiler [9]. More recently,
High Performance Java [20] and a number of parallel
Matlab versions [7] have extended their base languages
with high-level distribution specifications.

Object-oriented language extensions and systems
such as ICC++ [6] and pC++ [2] wrap distributions
and data into classes and collections with overridable
behavior to account for reuse and gain flexibility. This
represents significant progress with respect to produc-
tivity, but no advance regarding the specification and
efficient utilization of distributions. Distributions are
either restricted to a set of built-in types, or are speci-
fied via restrictive mechanisms (e.g., in ICC++ a map
file which is a sequence of integer indices along with
virtual processor numbers needs to be supplied man-
ually). Charm++ [19] lets the runtime system decide
how to map objects to processors such as to ensure
load-balance.

Recent language developments include the emerg-
ing class of partitioned global array (PGAS) languages,
such as CoArray Fortran [10], Unified Parallel C [17],
and Titanium [24]. These languages provide stan-
dard distributions but still require the user to explicitly
control communication in the context of a processor-
centric programming model. Thus they represent an
advance with regard to the MPI-based programming
paradigm, but do not target a broader productivity
impact along the lines of the Chapel approach.

Closer to the goals represented by Chapel are two
languages developed along with Chapel in DARPA’s
High Productivity Computing Systems (HPCS) pro-
gram: X10, designed in the PERCS project led by
IBM [12, 23], and Fortress [11], developed at SUN
Microsystems. Both languages use the HPF-inspired
approach of providing explicit data distribution decla-
rations.

A key difference between the language work reported
above and our research is that we do not study new
partitioning strategies for inclusion into a set of dis-
tributions offered by the language. There is no con-
cept of built-in distribution in Chapel: we provide a
general method for allowing novel distributions to be
expressed without modifying the compiler. A prede-
fined generic distribution type can be customized by
the programmer to express specific needs of the ap-
plication, algorithms, or data access patterns. This is
supported by a standard interface that establishes the
protocol of communication between user intentions and
compiler transformations. Such flexibility increases the
control a programmer has over efficient program execu-
tion while promoting software productivity via object-
oriented reuse, type parameterization, and composi-

tion.

3 Conceptual Framework

In this section we provide a conceptual framework
for distributions in Chapel, which we use throughout
the paper for the specification of their high-level se-
mantics. The lower-level mechanisms provided in the
language for controlling the layout of distributed data
will later, in Section 4.1, lead to a refinement of this
framework.

3.1 The Chapel Abstract Machine

The Chapel Abstract Machine contains a memory
component and a processing component. Each execu-
tion of a Chapel program on the abstract machine is as-
sociated with a region of its memory component, called
the execution locale set, and an unbounded, dynami-
cally managed set of threads in the processing compo-
nent.

The execution locale set is a non-empty finite set
of identical locales determined at the time program
execution begins. Locales are units of uniform mem-
ory access to which data and threads can be mapped.
Accesses of a thread to data are called local if thread
and data are mapped to the same locale, else remote.
In terms of performance metrics, a local access is as-
sumed to incur less overhead than a remote access.

Our distribution model handles the program-
controlled mapping of data and threads to locales,
and in addition allows the specification of the locale-
internal layout of data.

3.2 Domains

Domains represent a central element of Chapel, link-
ing index sets, distributions, arrays, and iterators.
They generalize features present in other languages,
such as HPF’s templates [15] and ZPL’s regions [4].
Specifically, a domain is a first-class entity, whose
principal aspects are:

e An index set, which is a finite set of names for
identifying components of arrays. The index set
of a domain can be a Cartesian product of inte-
ger intervals as in Fortran 90, in which case the
domain is referred to as arithmetic. However, in-
dex sets in Chapel can be much more general and
may include virtually every set in which an equal-
ity relation is defined, such as instances of a class
representing nodes in an unstructured grid. While
arithmetic domains are considered to be usually

invariant over significant portions of a program
(with controlled redefinition of their index sets al-
lowed via special statements), indefinite domains
provide for a dynamic manipulation of a domain’s
index set by allowing the insertion or removal of
individual indices at any time during the execu-
tion of an algorithm. The regular and semi-static
character of arithmetic domains furthers the gen-
eration of highly efficient target code for accesses
to arrays associated with such domains, whereas
indefinite domains offer a higher degree of flexibil-
ity to the user.

e A distribution, which specifies a global mapping
from the domain’s index set to locales in the exe-
cution locale set, as well as the local arrangement
of indices and data within locales.

e A set of associated arrays, which are mappings
from the domain’s index set to component vari-
ables of a given type. Arrays are allocated ac-
cording to the domain’s distribution. Due to the
generality of index sets and types in Chapel the
notion of an array is a more powerful concept than
its counterparts in traditional languages.

e [terators, which are functions defined over the in-
dex set of a domain, can be used to control the
execution of sequential and parallel loops.

While every domain has a well-defined index set at
any time of its existence, its other components are op-
tional. For example, a domain used only for access-
ing locales in a program may have the index set as
its sole component. However, this singular case is of
little interest; the major focus of this paper is on the
association of domains with arrays, the distribution of
domains and their arrays, and the efficient access to
array elements.

3.3 Index Mappings

This section introduces a class of functions defined
over finite, non-empty sets. We use them primarily
for modeling mappings involving index sets of domains.

Definition: Let X, Y denote finite, non-empty sets.

1. An index mapping from X to Y is a total func-
tion mapping X to the powerset, P(Y), of Y.

2. f is called proper iff f(z) # ¢ for all z € X.

3. For a proper index mapping, f, from X to Y, the
set

fX)={yeY|IreX :ye f(x)}

is called the image of X under f.

4. Given a proper index mapping, f, from X to Y,
the inverse mapping, f~!, is the inverse of the
relation in X x Y defined by f: for ally € Y :

fHy) ={reX]|ye flz)}

5. A proper index mapping is called replication-
free iff
| f(x) |=1 for all x € X. Such a function will
be interpreted as a total mapping, f: X — Y. If
it is surjective, then f~! defines a partition of X
in the mathematical sense, where all elements of
X mapped to the same y € Y belong to the same
equivalence class.

3.4 Data Distribution for Domains and
Arrays

A data distribution is defined for a domain, whose
index set is being distributed, and a subset of the exe-
cution locale set, which serves as the target of the dis-
tribution. The core components of a distribution are
two functions referred to as the global mapping and the
layout, both of which are defined over the domain’s in-
dex set. The global mapping is an index mapping from
the domain’s index set to the target locales, while the
layout maps indices to locations of the locale associ-
ated with them via the global mapping, thus allowing
the specification of locale-internal data arrangements.

The global mapping is the primary component of a
distribution and must be explicitly specified any time
a distribution is defined. In contrast, the specification
of the layout may be left to the system, which provides
a default layout for any global mapping. Explicit spec-
ification of the layout is required if sophisticated data
representation strategies are to be applied, which are
beyond the reach of automatic methods, such as for
distributed sparse data structures. In such a case, the
layout specification allows virtually complete control
over the locale-internal allocation policy. This capabil-
ity can provide a significant performance gain in situa-
tions, where there is a strong correlation between data
access patterns and internal data structures reflecting
properties of an application that cannot be automati-
cally recognized by the compiler.

The data distribution defined for a domain is applied
to all arrays associated with the domain and controls
their allocation in memory.

3.4.1 Global Mapping

The global mapping of a domain to a set of target lo-
cales results in subsets of domain indices being associ-
ated with each target locale. In the following definition
we assume a domain D with index set I, which is dis-
tributed to a non-empty subset, LOC, of the execution
locale set.

Definition:

1. The global mapping, J, of a data distribution
for D is a proper index mapping from I to LOC.

2. D is called the source domain of the distribution.

3. LOC is called the target locale set; its domain
is called the target domain.

4. The inverse, 61, of the global mapping is called
the ownership function.

5. Given loc € LOC, §~*(loc) is called the distribu-
tion segment of [oc under the global map §.

The distribution segment of a locale loc under the
global map § specifies the set of all indices in the source
domain, I, which are mapped to loc via §. The image,
d(I), of I under ¢ is called the actual target locale
set for the distribution. This must be a non-empty set.
d(I) may be a proper subset of LOC in that case there
exist empty distribution segments.

In general, different distribution segments may con-
tain identical elements. However, if the global mapping
is replication-free, then the distribution segments asso-
ciated with the actual target locale set are pairwise
disjoint and constitute a partition of 1.

Let A denote an array associated with domain D.
Then the mapping i — §(i) for all ¢ € I determines the
set of all locales on which the array component variable
A(i),i € 1, is to be allocated. For every loc in the
actual target locale set, §(I), the local array segment
of loc for A is the representation of the portion of A,
A(67(loc)), which is associated with the distribution
segment of loc. The way in which data are stored in
the local array segment is determined by the layout and
the array’s element type.

In many cases of interest, the global mapping of a
distribution is replication-free. However, there are in-
stances where the mapping to a powerset is required.
An example is the replication of a “small” data struc-
ture (such as a scalar) to all locales: 6(i) = LOC for
all ¢ € I. In this as well as in related cases, the de-
cision to replicate is motivated by the goal to reduce
communication latency and bandwidth requirements.

3.4.2 Layout

The layout of a data distribution specifies the locale-
internal representation of distribution segments and
array data in the context of a global mapping. Related
functions include methods for accessing data and
iterating over index sets. A more detailed discussion
of the interface presented to the user for specifying
layout will be found in Section 4.1. Here we introduce
one basic function, which we call the layout mapping:

Definition: Let D and I be given as above, and §
denote a global mapping. The layout mapping of a
data distribution is an index mapping, A, from I to
the set of indices ! in the locale determined by the
global mapping.

For any array A and index ¢ € I, §(¢) and A(¢) are
the key components determining the location in which
element A(7) is stored.

4 Use and Definition of Distributions
in Chapel

const nl = 1000000;

const DIC: domain(1) distributed (MyC())

=[1..nl1];

const DIB: domain(1l) distributed (MyB())

on Locales (1..num\ _locales /10)=[1..nl1];
var Al: [DI1C] float;
float ;

var A2: [D1B]

Assuming a distribution to be given, it can be ap-
plied in a way similar to that in HPF-style languages,
except that distributions in Chapel are bound to do-
mains, and all arrays associated with a domain inherit
the index set and distribution of the domain. The fol-
lowing code illustrates these relationships with a simple
example:

const nl = 1000000;

const DIC: domain(1) distributed (MyC())
=[1l..nl];

const DIB: domain(1) distributed (MyB())
on Locales (1..num)\ _locales /10)=[1..nl];

var Al: [DIC] float;

1n this context, we speak informally of locations.

var A2: [DIB] float;

We assume that MyC and MyB are distribution classes
defined elsewhere. D1C and D1B are declared as invari-
ant arithmetic domains of rank 1, with identical index
sets defined as the set of all integers in the interval
1..1000000. D1C is distributed using an instance of the
distribution class MyC. As we will see below, this repre-
sents a cyclic distribution. By default the target locale
set of this distribution is the full execution locale set.

D1B is distributed using an instance of the distribu-

tion class MyB, which will later be defined as a block
distribution. In contrast to D1C, only the first 10%
of locales in the execution locale set (which is repre-
sented by the predefined variable Locales) are used as
target locales in this case. Finally, A1 and A2 are arrays
of floating point numbers whose index sets and distri-
butions are respectively determined by the associated
domains D1C and D2C.
Usually, standard distribution classes such as those rep-
resented by MyC and MyB will be defined as part of a
distribution library. In the simplest case, such defini-
tions could be specified as shown bellow:

class MyC: Distribution {
const ntl: integer;
function map(i:index(source)): locale
{return Locales(mod(i—1,ntl)+1);}

iterator DistSeglterator
(loc:index(target)): index(source) {
const N: integer = getSource ().extent;
const k: integer = locale\ _index(loc);
for i in k..N by ntl { yield(i); }

}

function GetDistributionSegment

(loc: index(target)): Domain {

const N: integer = getSource ().extent;
const k: integer = locale)_index(loc);

return (k..N by ntl)

}

class MyB: Distribution {
const bl=...;
/x global map for a simplified regular
block distribution with block
length bl: %/
function map(i: index(source)): locale
{return Locales(ceil (i/bl));}

}

Assume num_locales=1000. The distribution classes
MyC and MyB are both introduced as subclasses of the
base class Distribution. MyC can be used to dis-
tribute one-dimensional arithmetic domains cyclically,
while MyB represents a regular one-dimensional block
distribution. For MyC, the global mapping function,
map, defines a replication-free mapping from each in-
dex 7 € 1..nl to the locale Locales (mod(i-1,nt1)+1).
For example, assuming that the number of locales is
given as nt1=1000, index 876543 is mapped to locale
Locales(543), whose distribution segment is given as
§71(543) := {i | i = 543 + j * 1000, for all j such that
0 < j < 999}

Subsequent calls of the iterator DistSegIterator yield
the indices belonging to a locale, loc, while the func-
tion

GetDistributionSegment determines the associated
set of all indices.

Similarly, the distribution of D1B is specified by an
instance of MyB and evaluated in the context of the
target locale set Locales(1..100). The global mapping
function in this case determines the block length, bl,
as b1=1000000/100, yielding the value 10000, and re-
sulting in the mapping

8(i) := [1gegg | for all 4,1 < i < 1000000

The distribution segments are given as

7 Y(loc) :==i | (loc — 1) * bl + 1..loc * bl for all locales
Locales(loc); 1 < loc < 100.

4.1 User-Defined Specification of Distri-
butions

The Chapel programmer does not necessarily need
insight into the inner workings of a distribution. As
long as the functionality provided by predefined distri-
butions is sufficient, the programmer only needs knowl-
edge of the interfaces to these distributions (which
must be contained in a library) and guidance for their
effective use in view of the array declarations in the
program and the related access patterns in algorithms.

In this section we provide an overview of the inter-
face and the methodology for the specification of user-
defined distributions. In a sense, these features can be
considered to be at a lower level of abstraction than
the rest of the Chapel language since their implemen-
tation interacts directly with relevant properties of the
hardware architectures on which Chapel programs will
run. Specifically, the locality properties of a program
execution and the required communication depend on
the access patterns to arrays and the distributions of

their domains. We can think of specialized distribution
writers (which of course can be the application devel-
opers themselves) being in charge of developing sophis-
ticated distribution libraries that reflect properties of
applications.

We begin by explaining the interface of the distribu-
tion framework in Section 4.1.1. As already discussed,
distributions can be essentially specified at two levels,
one of which deals only with the global mapping while
the other uses in addition an explicit layout to control
in detail the arrangement of data at the locale-internal
level. In the simplest case, the user is only required to
specify the global mapping, while the system provides
by default all functionality required for the allocation
and management of distributions and distributed ar-
rays. MyB, in the example introduced above, illustrates
this option.

4.1.1 Main Classes

The distribution framework provides the distribution
writer with tools for supplying application-specific
functionality to the compiler and runtime system via a
set of predefined public base classes with an overridable
interface.

The base classes involved include Domain,
Distribution, and LocalSegment, which are shown
in the following code excerpt together with public
methods:

class Domain {
iterator for (): IndexType;
iterator forall (): IndexType;
function GetDistribution (): Distribution;
/x the function GetParent yields the
parent if the given domain is a
subdomain, and nil else: x/

function GetParent (): Domain;
function extent (): integer;
}

class Distribution {

function getSource (): Domain;

function getTargetDomain ():Domain;

function getTargetLocales ():[target] locale;

function map(i: index(source)): locale;

iterator DistSeglterator (loc:index(target)):
index (source));

function GetDistributionSegment

}

(loc: index(target)):Domain;

class LocalSegment: Domain {
function getLocale (): locale;
/x locale associated with an instance

of this class x/ matrix example in Section 4.1.2, the user may need to

var LocalDomain: Domain;
/* local data domain */
function layout(i: index(source)):

}

We provide here only a reduced list focusing on the
main functionality required in this section, and omit-
ting details that will be used and explained in ex-
amples. For example, an arithmetic domain provides
methods that determine the extent of its index set, and
for each of its dimensions the lower and upper bounds.

The Domain class supports the built-in features
for domains in the language. The core compo-
nent of the framework is the Distribution base
class. Any user-defined distribution class is a sub-
class of Distribution. The getSource method yields
the source domain of the distribution, while the
getTargetDomain and
getTargetLocales methods respectively yield the
target domain and the target locale set. The
map method represents the global mapping from
source indices to target locales. The iterator
DistSegIterator(loc) produces the elements in the
distribution segment associated with locale loc, as
a sequence of source domain indices. Finally, the
function GetDistributionSegment, applied to a locale
loc, yields the domain associated with the distribution
segment of loc.

The global mapping is the only method that
must be always specified by the distribution writer
when specifying a new distribution. The system
provides default versions of DistSeglterator and
GetDistributionSegment by automatically inverting
the map function. These potentially expensive compu-
tations can be overridden by the user, as illustrated in
one of our examples.

The LocalSegment class, a subclass of Domain, is a
predefined class that provides a default representation
of distributions and associated array data in locales. A
separate instance of this class is created on every locale
in the target locale set of a distribution. This class can
be overridden if the user wants explicit control of either
mechanism.

The function getLocale yields the locale for a spe-
cific instance of
LocalSegment. Let loc denote such a locale: we
discuss the properties of the particular instance of
LocalSegment for this locale. The value of the public
variable LocalDomain is the domain for the represen-
tation of local array data in locale loc. Each array
associated with the source domain of the distribution
is represented in locale loc by a separate array over
the domain LocalDomain. As illustrated in the sparse

index (LocalDomain);

generate a set of persistent auxiliary data structures
in each locale to support an efficient representation of
the distribution and the mapping from global to locale-
internal indices. Finally, the layout function maps a
global source index (that in the given context can be
assumed to be in the distribution segment associated
with loc) to the associated index in LocalDomain.

4.1.2 Distributed Sparse Data Structures

In terms of building the distribution, the generation of
a sparse structure differs from that of a dense domain
in at least the following points:

e It is necessary to deal with two domains and their
interrelationship: the algorithm writer formulates
the program based on the original dense domain,
i.e., indexing data collections in the same way as
if they were dense. In contrast, the actual repre-
sentation of the data and the implementation of
the algorithm are based on the sparse subdomain
of the dense domain.

e In many approaches used in practice, the distribu-
tion is determined in two steps:

1. First, the dense domain is distributed, i.e.,
a mapping is defined for all indices of that
domain, including the ones associated with
zeroes. In general, this will result in an irreg-
ular partition, reflecting the sparsity pattern
and communication considerations.

2. Secondly, the resulting local segments are
represented using a sparse format, such as
CRS (compressed row storage).

The approach for user-defined distributions in
Chapel presented so far is powerful enough to deal with
this problem. For example, the required auxiliary data
structures, such as the data, row, and column vectors in
a compressed row storage (CRS) representation of dis-
tribution segments can be declared as persistent data
structures that can be accessed by the layout function
and iterators. Due to space limits details cannot be
discussed in this paper.

5 Conclusion and Future Research

We have presented the design and implementation
of language constructs and interfaces for user-defined
distributions in Chapel, an explicitly parallel program-
ming language. Our work is motivated by the need to
provide better language and system support for pro-
ductively writing parallel programs.

Our work exploits powerful Chapel concepts such as
domains, generalized arrays, and iterators as well as the
capability to distribute domains and their associated
arrays across locales. The user-defined specification of
a distribution includes a global mapping of indices to
locales, and can, in addition, control the on-locale lay-
out reflecting special allocation policies. Such alloca-
tion requirements can be expressed through a special-
ization of the LocalSegment class. The compiler auto-
matically transforms locality-aware Chapel code into
explicitly distributed code. We believe that the re-
sulting programming model is systematic and concise,
enabling reuse and high productivity. We also believe
that the systematic exposure of distribution aspects to
the programmer results in increased potential runtime
efficiency and enables code optimizations.

A number of issues relevant in the context of dis-
tributions have not been discussed in this paper due
to space and time limitations. These include the ca-
pability of user-defined distributions to specify general
alignments, and the full specification of user-defined
halos. There are also some areas in which research is
currently in progress, including the efficient manage-
ment of distributions under a set of domain operations
defined in the language, the optimization of runtime
support for the dynamic management of distributions
and the dynamic optimization of communication for
irregular problems.

The implementation of the language features de-
scribed in this paper is currently underway. The pre-
sentation of the paper will include performance results
of the Chapel distribution features, and comparisons
with corresponding solutions based on the message-
passing approach.

Acknowledgment

This paper is based upon work supported by the
Defense Advanced Research Projects Agency under its
Contract
No. NBCH3039003. The research described in this pa-
per was partially carried out at the Jet Propulsion Lab-
oratory, California Institute of Technology, under con-
tract with the National Aeronautics and Space Admin-
istration.

We would like to thank our collaborators and pro-
ponents of the Chapel language, David Callahan and
Bradford Chamberlain of Cray Inc., for continuously
providing ideas and constructive feedback, and expos-
ing interesting issues related to distributions.

References

[1] Eugene Albert, Kathleen Knobe, Joan D. Lukas,
and Jr. Guy L. Steele. Compiling fortran 8x
array features for the connection machine com-
puter system. In PPEALS ’88: Proceedings of the
ACM/SIGPLAN conference on Parallel program-
ming: experience with applications, languages and
systems, pages 42-56. ACM Press, 1988.

[2] Francois Bodin, Peter Beckman, Dennis Gannon,
Srinivas Narayana, and Shelby X. Yang. Dis-
tributed pC++: Basic Ideas for an object parallel
language. Scientific Programming, 2(3), 1993.

[3] David Callahan, Bradford Chamberlain, and Hans
Zima. The Cascade High Productivity Language.
In Ninth International Workshop on High-Level
Parallel Programming Models and Supportive En-
vironments (HIPS’04), pages 52-60. April 2004.

[4] Bradford Chamberlain. The Design and Imple-
mentation of a Region-Based Parallel Program-
ming Language. PhD thesis, Department of
Computer Science and Engineering, University of
Washington, 2001.

[5] Barbara M. Chapman, Piyush Mehrotra, and
Hans P. Zima. Programming in Vienna Fortran.
Scientific Programming, 1(1):31-50, 1992.

[6] A. Chien, U. Reddy, J. Plevyak, and J. Dolby.
ICC++ — A C++ dialect for high performance
parallel computing. Springer LNCS, 1049:76-94,
1996.

[7] Ron Choy and Alan
allel MATLAB: Doing it

Edelman. Par-
Right.

http://www.interactivesupercomputing.com/downloads/pma

[8] Cray Inc. Chapel Specification 4.0, February 2005.
http://chapel.cs.washington.edu/specification.pdf.

[9] Alain Darte, John Mellor-Crummey, Robert
Fowler, and Daniel Chavarra-Miranda. General-
ized multipartitioning of multi-dimensional arrays
for parallelizing line-sweep computations. J. Par-
allel Distrib. Comput., 63(9):887-911, 2003.

[10] Yuri Dotsenko, Cristian Coarfa, and John Mellor-
Crummey. A multi-platform co-array fortran com-
piler. In PACT °04: Proceedings of the 13th In-
ternational Conference on Parallel Architectures
and Compilation Techniques, pages 29—40, Wash-
ington, DC, USA, 2004. IEEE Computer Society.

[11]

[12]

[13]

[14]

[15]

[16]

[18]

[19]

E.Allen, D.Chase, V.Luchangco, J.-W. Maessen,
S.Ryu, G.L.Steele Jr., and S.Tobon-Hochstadt.
The fortress language specification version 0.707.
Technical report, Sun Microsystems, Inc., July
2005.

Kemal Ebcioglu, Vijay Saraswat, and Vivek
Sarkar. X10: Programming for hierarchical paral-
lelism and non-uniform data access. In 3rd Inter-
national Workshop on Language Runtimes, ACM
OOPSLA 2004, Vancouver, BC, October 2004.

Stephen J. Fink, Scott B. Baden, and Scott R.
Kohn. Efficient run-time support for irregular
block-structured applications. J. Parallel Distrib.
Comput., 50(1-2):61-82, 1998.

G. Fox, Hiranandani, S., Kennedy, K., Koelbel,
C., Kremer, U., Tseng, C.-W., and M.-Y. Wu. For-
tran D language specification. Technical Report
CRPC-TR90079, Houston, TX, December 1990.

High Performance Fortran Forum. High Perfor-
mance Fortran language specification, version 2.0.
Technical report, January 1997.

H.Meuer, E.Strohmaier, J.Dongarra, and
H.D.Simon. Top 500 supercomputer sites.
http://www.top500.0rg.

Parry Husbands, Costin Iancu, and Katherine
Yelick. A performance analysis of the berkeley upc
compiler. In ICS ’03: Proceedings of the 17th an-
nual international conference on Supercomputing,
pages 63-73, New York, NY, USA, 2003. ACM
Press.

H.Zima, P.Brezany, B.Chapman, P.Mehrotra, and
A .Schwald. Vienna fortran — a language specifica-
tion. Technical Report 21, ICASE, NASA Langley
Research Center, March 1992.

Laxmikant V. Kale and Sanjeev Krishnan.
CHARM++: A Portable Concurrent Object Ori-
ented System Based On C++. In Proceedings of
the OOPSLA 93 Conference on Object-oriented
Programming Systems, Languages and Applica-
tions, pages 91-108, 1993.

Indiana University Pervasive Technology Labs.
High performance java. http://www.hpjava.org.

P. Mehrotra and J. Van Rosendale. Programming
distributed memory architectures using Kali. In
Advances in Languages and Compilers for Parallel
Computing. MIT Press, 1991.

[22]

[23]

[24]

Robert E. Millstein. Control structures in illiac iv
fortran. Commun. ACM, 16(10):621-627, 1973.

P.Charles, C.Grothoff, V.Saraswat, C.Donawa,
A Kielstra, K.Ebciogluy, C.von Praun, and
V.Sarkar. X10: an object-oriented approach to
non-uniform cluster computing. In Conference
on Object-Oriented Programming Systems, Lan-
guages and Applications, pages 519-538, 2005.

Kathy Yelick, Luigi Semenzato, Geoff Pike, Car-
leton Miyamoto, Ben Liblit, Arvind Krishna-
murthy, Paul Hilfinger, Susan Graham, David
Gay, Phil Colella, and Alex Aiken. Titanium:
A high-performance Java dialect. In ACM, ed-
itor, ACM 1998 Workshop on Java for High-
Performance Network Computing, New York, NY
10036, USA, 1998. ACM Press.

